Making the best of the worst of times: traits underlying combined shade and drought tolerance of *Ruscus aculeatus* and *Ruscus microglossum* (Asparagaceae)

Alexandria PivovaroffA,C, Rasoul ShariB, Christine ScoffoniB, Lawren SackB and Phil RundelB

ADepartment of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA.
BDepartment of Ecology and Evolutionary Biology, University of California, 621 Charles E Young Drive South, Los Angeles, CA 90095-1606, USA.
CCorresponding author. Email: alexandria.pivovaroff@email.ucr.edu

Abstract. The genus *Ruscus* (Asparagaceae) consists of evergreen, woody monocot shrubs with modified photosynthetic stems (phylloclades) that occur in dry, shaded woodland areas of the Mediterranean Basin and southern Europe. The combined drought and shade tolerance of *Ruscus* species challenges the ‘trade-off model’, which suggests that plants can be either drought or shade adapted, but not both. To clarify the potential mechanisms that enable *Ruscus* species to survive in shaded environments prone to pronounced soil drought, we studied form–function relations based on a detailed trait survey for *Ruscus aculeatus* L. and *Ruscus microglossum* Bertol., focusing on gas exchange, hydraulics, morphology, anatomy, and nutrient and isotope composition. We then compared these trait values with published data for other species. *R. aculeatus* and *R. microglossum* exhibited numerous traits conferring drought and shade tolerance via reduced demand for resources in general and an ability to survive on stored water. Specific traits include thick phylloclades with low rates of maximum photosynthetic CO\textsubscript{2} assimilation, low stomatal conductance to water vapour (g\textsubscript{s}), low respiration rate, low light compensation point, low shoot hydraulic conductance, low cuticular conductance, and substantial water storage tissue. *Ruscus* carbon isotope composition values of \sim33 δ^{13}C were typical of an understory plant, but given the low g\textsubscript{s} could be associated with internal CO\textsubscript{2} recycling. *Ruscus* appears to be a model for extreme dual adaptation, both physiologically and morphologically, enabling its occupation of shaded sites within drought prone regions across a wide geographical range, including extremely low resource understory sites.

Additional keywords: carbon isotopes, functional morphology, gas exchange, hydraulic conductance, Mediterranean climate, phylloclades, understory.

Received 4 March 2013, accepted 14 July 2013, published online 28 August 2013

Introduction

Plant ecological distributions are constrained by several factors including tolerance of environmental conditions such as light and water availability (Sack 2004; Niinemets and Valladares 2006; Hallik et al. 2009; Sterck et al. 2011). According to the ‘trade-off model’ hypothesised by Smith and Huston (1989), a plant’s adaptations can either allow it to tolerate low light or low water availability. However, many plant species have been reported to tolerate sites prone to strong combinations of drought and shade, including *Ruscus aculeatus* L. (Sack et al. 2003b), which occurs in dry, shaded understory habitats subjected to annual seasonal drought.

Previous studies have shown several species can tolerate combined shade and drought in experiments (Sack 2004; Martínez-Tillería et al. 2012) and in the field (Caspersen 2001; Engelbrecht and Kursar 2003; Niinemets and Valladares 2006), but the physiological mechanisms contributing to this ability have not received detailed study. The ability of *Ruscus* species to survive very strong combinations of shade and drought in the field and in experiments (Sack et al. 2003b; Sack 2004) makes it a model for such dual adaptation. However, the species have received little detailed study, and previous work has emphasised its adaptation via phenology (de Lillis and Fontanella 1992; Martínez-Pallé and Aronne 1999), high biomass allocation to roots, and its apparent conservative resource use (Sack et al. 2003b).

The objective of this research was to clarify the wide range of potential adaptations of *Ruscus* that contribute to its remarkable ability to survive and regenerate in shaded sites prone to occasional or seasonal soil drought. To achieve this objective, we studied 57 traits relating to gas exchange, hydraulics, morphology, anatomy, and nutrient and carbon isotope composition in two *Ruscus* species, *R. aculeatus* and *Ruscus microglossum* Bertol. (Fig. 1). We then compared trait values...
with those hypothesised to confer shade tolerance, drought avoidance or both. Overall, for 21 traits we had a priori hypotheses of a benefit for shade tolerance and for 24 traits we had a priori hypotheses of a benefit for drought avoidance. We then compared the traits for Ruscus with values compiled from the literature for: (1) temperate and tropical broadleaf evergreen species; (2) Mediterranean species; and (3) woody angiosperms in general; in order to put Ruscus trait values in a global context. This approach involved measuring a large number of key aspects of structure and function and, when possible, compiling specific hypotheses for traits potentially involved in the shade and drought tolerance Ruscus species relative to comparator species (Tables 1–5). According to the previous literature on shade and drought tolerance (for example, Givnish 1988; Jones and Edwards 2012) these suites of traits in Ruscus are expected to directly or indirectly contribute to mechanisms operating across cell types and levels of leaf organisation conferring combined shade and drought adaptation.

Thus, on the general understanding of shade and drought tolerance traits, we hypothesised that Ruscus species would have mechanisms of drought adaptation including traits enabling the delay of tissue dehydration, and traits enabling maintained function even as tissue dehydrates. Such traits include a high water-use efficiency (Wright and Westoby 2003), as well as water storage tissue with high water storage capacitance associated with low bulk leaf modulus of elasticity, high relative water content at turgor loss point, and low cuticular conductance (Sack et al. 2003a; Pasquet-Kok et al. 2010; Ogburn and Edwards 2012). Traits potentially contributing to shade tolerance include low rates of maximum photosynthetic CO₂ assimilation per leaf area and per leaf mass, low light compensation point, low maximum rate of carboxylation, low maximum rate of electron transport, and more negative carbon isotope ratios (Walters and Reich 1999). Traits that potentially confer a combined drought and shade tolerance through a general conservative and cost-efficient resource use include thick lamina with thick epidermis, low respiration rates per area and mass, low stomatal conductance, and low shoot hydraulic conductance (Sack et al. 2003b). Given the exceptional biology of these species – their extreme tolerance and their possession of phylloclades – we also qualified additional traits, in particular the detailed anatomical traits such as cell sizes, for which we could not compile hypotheses due to the paucity of comparative data in the published literature. However, such anatomical traits have been argued to be strongly associated with environmental adaptation in principle (Haberlandt 1914), and thus these data for Ruscus are likely to be important as future studies provide comparative data for many species.

Materials and methods

Study species and site

Ruscus (Asparagaceae) is a genus of six species of evergreen sclerophyllous woody shrubs native to western and southern Europe (including north to southern England), Macaronesia, north-west Africa, and south-western Asia ranging east to the Caucasus (de Lillis and Fontanella 1992; Martínez-Pallé and Aronne 1999). Ruscus is thus found in a wide range of temperate forests as well as in Mediterranean-type climates characterised by wet, cool winters and dry, warm summers that result in an annual seasonal period of low water availability, or drought (Matalas 1963; Dracup 1991; Cowling et al. 1996). Ruscus exhibits phylloclades, which are flattened photosynthetic stems that resemble leaves, and are considered intermediate organs that combine stem and leaf features (Fig. 1; Cooney-Sovetts and Sattler 1987). Ruscus aculeatus L. is a

Table 1. Mean values for morphological traits ± s.e. for Ruscus aculeatus and R. microglossum, with units and replication

For given traits, expectations are given for whether Ruscus should have a higher or lower value relative to comparator species according to the hypotheses of shade or drought adaptation. Comparator species data were taken according to availability in the previously published literature and number of species, and minimum, mean, and maximum trait values are provided, or mean ± s.e. if only these were available. Sources of comparative data: leaf area (Sack et al. 2012); LMA (Wright et al. 2004); density (Niinemets 1999); LDMC (Vile 2005); and SWC (Vendramini et al. 2002; Ogburn and Edwards 2012).

<table>
<thead>
<tr>
<th>Morphological traits</th>
<th>Units</th>
<th>R. aculeatus Mean ± s.e. N</th>
<th>R. microglossum Mean ± s.e. N</th>
<th>Hypotheses</th>
<th>Comparator species (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf area</td>
<td>cm²</td>
<td>1.80 ± 0.06 92</td>
<td>19.3 ± 0.34 84</td>
<td>Lower<sup>A</sup></td>
<td>Lower<sup>A</sup>Dicots (485) 0.10, 17.8, 280</td>
</tr>
<tr>
<td>Leaf mass per area (LMA)</td>
<td>g m⁻²</td>
<td>122.8 ± 8.9 92</td>
<td>91.0 ± 0.9 84</td>
<td>Higher</td>
<td>Temperate broadleaf evergreen (132) 58.0, 153, 429</td>
</tr>
<tr>
<td>Density</td>
<td>g cm⁻³</td>
<td>0.39 ± 0.03 10</td>
<td>0.27 ± 0.01 10</td>
<td>Higher<sup>A</sup></td>
<td>Tropical broadleaf evergreen (72) 40.6, 145, 370</td>
</tr>
<tr>
<td>Leaf dry matter content (LDMC)</td>
<td>g g⁻¹</td>
<td>0.389 ± 0.016 6</td>
<td>0.310 ± 0.005 6</td>
<td>Higher<sup>A</sup></td>
<td>Woody trees and shrubs (38) 0.09, 0.41, 1.33</td>
</tr>
<tr>
<td>Saturated water content (SWC)</td>
<td>g g⁻¹</td>
<td>1.59 ± 0.12 6</td>
<td>2.23 ± 0.05 6</td>
<td>Higher<sup>B</sup></td>
<td>Shrubs (>100) 0.384 ± 0.0084</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Evergreen trees and shrubs (6) 0.67, 1.82, 6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Succulents (45) 1.70, 11.7, 52.0</td>
</tr>
</tbody>
</table>

^A An expectation according to a hypothesis was confirmed for R. aculeatus.

^B An expectation according to a hypothesis was confirmed for R. microglossum.

^C Expectations for these traits are based on drought tolerance conferred by water storage tissue (‘succulence’); the opposite expectations would arise for drought tolerance conferred by the ability to maintain turgor with dehydration.
Table 2. Mean values for anatomical traits ± s.e. for *Ruscus aculeatus* and *R. microglossum*, with units and replication

For given traits, expectations are given for whether *Ruscus* should have a higher or lower value relative to comparator species according to the hypotheses of shade or drought adaptation. Comparator species data were taken according to availability in the previously published literature and number of species, and minimum, mean, and maximum trait values are provided. Sources of comparative data: tissue thickness and airspace (Sack and Frole 2006); *Dm* (Brodribb et al. 2007). NS, not statistically significant at *P* < 0.05.

<table>
<thead>
<tr>
<th>Anatomical traits</th>
<th>Units</th>
<th>R. aculeatus</th>
<th>Units</th>
<th>R. microglossum</th>
<th>Hypotheses</th>
<th>Comparator species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean ± s.e.</td>
<td>N</td>
<td>Mean ± s.e.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamina</td>
<td>µm</td>
<td>278 ± 3.34</td>
<td>5</td>
<td>296 ± 8.57</td>
<td>Higher A, B</td>
<td>Tropical evergreen trees (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>278 ± 3.34</td>
<td>5</td>
<td>296 ± 8.57</td>
<td>Higher A, B</td>
<td>156, 267, 512</td>
</tr>
<tr>
<td>Cuticle</td>
<td>µm</td>
<td>3.52 ± 0.22</td>
<td>5</td>
<td>3.29 ± 0.23</td>
<td>Higher</td>
<td>Tropical evergreen trees (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.52 ± 0.22</td>
<td>5</td>
<td>3.29 ± 0.23</td>
<td>Higher</td>
<td>1.25, 4.60, 10.5</td>
</tr>
<tr>
<td>Epidermis</td>
<td>µm</td>
<td>20.2 ± 0.153</td>
<td>5</td>
<td>23 ± 0.657</td>
<td>Higher A, B</td>
<td>Tropical evergreen trees (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.2 ± 0.153</td>
<td>5</td>
<td>23 ± 0.657</td>
<td>Higher A, B</td>
<td>9.75, 14.0, 17.3</td>
</tr>
<tr>
<td>Epidermis cell wall</td>
<td>µm</td>
<td>3.41 ± 0.11</td>
<td>5</td>
<td>3.69 ± 0.25</td>
<td>Higher A, B</td>
<td>Tropical evergreen trees (10)</td>
</tr>
<tr>
<td>Mesophyll</td>
<td>µm</td>
<td>72.6 ± 1.79</td>
<td>5</td>
<td>83.0 ± 2.72</td>
<td>Higher</td>
<td>Tropical evergreen trees (10)</td>
</tr>
<tr>
<td>Water storage</td>
<td>µm</td>
<td>88.7 ± 7.05</td>
<td>5</td>
<td>86.2 ± 5.87</td>
<td>Present A, B</td>
<td>Tropical evergreen trees (10)</td>
</tr>
<tr>
<td>% total leaf air space</td>
<td>%</td>
<td>10.5 ± 1.38</td>
<td>5</td>
<td>20.8 ± 1.73</td>
<td></td>
<td>75, 14.0, 17.3</td>
</tr>
<tr>
<td>Cell dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidermis cell area</td>
<td>µm²</td>
<td>447 ± 27.0</td>
<td>5</td>
<td>599 ± 35.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidermis cell perimeter</td>
<td>µm</td>
<td>78.9 ± 2.61</td>
<td>5</td>
<td>94.1 ± 2.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesophyll cell area</td>
<td>µm²</td>
<td>657 ± 21.5</td>
<td>5</td>
<td>846 ± 42.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesophyll cell perimeter</td>
<td>µm</td>
<td>94.5 ± 1.72</td>
<td>5</td>
<td>110 ± 2.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% chloroplast area in mesophyll cell</td>
<td>%</td>
<td>21.2 ± 1.49</td>
<td>5</td>
<td>21.1 ± 3.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesophyll area/ total leaf area (A_{mes}/A)</td>
<td></td>
<td>24.7 ± 1.3</td>
<td>5</td>
<td>20.5 ± 0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water storage cell area</td>
<td>µm²</td>
<td>3414 ± 196</td>
<td>5</td>
<td>5972 ± 847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water storage cell perimeter</td>
<td>µm</td>
<td>221 ± 5.72</td>
<td>5</td>
<td>291 ± 19.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum distance from vein to epidermis (D_m)</td>
<td>µm</td>
<td>203 ± 18.0</td>
<td>5</td>
<td>370 ± 49.3</td>
<td>Higher B</td>
<td>Dicotyledons (11)</td>
</tr>
<tr>
<td>Intervenial distance (IVD)</td>
<td>µm</td>
<td>272 ± 27.5</td>
<td>5</td>
<td>509 ± 71.5</td>
<td>Lower 4</td>
<td>129, 233, 428</td>
</tr>
<tr>
<td>Fibrous bundle sheath cell height</td>
<td>µm</td>
<td>18.4 ± 1.27</td>
<td>5</td>
<td>17.5 ± 1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrous bundle sheath cell width</td>
<td>µm</td>
<td>17.4 ± 0.66</td>
<td>5</td>
<td>16.3 ± 0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrous bundle sheath cell wall thickness</td>
<td>µm</td>
<td>4.57 ± 0.41</td>
<td>5</td>
<td>2.48 ± 0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average theoretical xylem conduit conductivity in the midrib</td>
<td>× 10⁻⁶ mmol m⁻² s⁻¹ MPa⁻¹</td>
<td>1.24 ± 0.25</td>
<td>5</td>
<td>1.98 ± 0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average theoretical xylem conduit conductivity in an intermediary vein</td>
<td>× 10⁻⁶ mmol m⁻² s⁻¹ MPa⁻¹</td>
<td>0.63 ± 0.14</td>
<td>5</td>
<td>1.19 ± 0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average theoretical xylem conduit conductivity in a minor vein</td>
<td>× 10⁻⁶ mmol m⁻² s⁻¹ MPa⁻¹</td>
<td>0.37 ± 0.12</td>
<td>5</td>
<td>0.28 ± 0.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued next page)
typical understory species in forests in the Mediterranean basin (Fig. 1; de Lillis and Fontanella 1992; Martínez-Pallé and Aronne 1999; Sack et al. 2003b). *Ruscus microglossum* Bertol. is a hybrid produced by crossing species *Ruscus hypoglossum* L., from the Black Sea region, and *Ruscus hypophyllum* L., from North Africa (Fig. 1; Thomas 1992; USDA, ARS, National Genetic Resources Program 2009).

Experiments were conducted on *R. aculeatus* and *R. microglossum* plants in the Mildred E. Mathias Botanical Garden at the University California, Los Angeles, from June to August 2009. Measurements were made in shaded understory sites on at least three individuals of each species. Diurnal light measurements were made on sunny days above the *Ruscus* plant canopies with a quantum sensor (Li-190S, Li-Cor Biosciences, Lincoln, NE, USA). Individuals received full sunlight averaging ~1500 μmol m⁻² s⁻¹ photosynthetically active radiation (PAR) for ~1 h each day, and otherwise experienced PAR of ~50 μmol m⁻² s⁻¹ interspersed with sunflacks averaging ~190 μmol m⁻² s⁻¹. Plants were irrigated as needed, and all *Ruscus* individuals were watered before the start of this study to reduce any differences in water availability between individuals.

Phylloclade morphology

We determined leaf morphological traits on recently formed mature phylloclades. Although methods were applied to phylloclades, for convenience we retained the names of methods and traits as applied to leaves (e.g. leaf mass per area). Phylloclade area was measured on excised samples with an area meter (Li-3100, Li-Cor Biosciences). Samples were dried in an oven at >70°C for more than 48 h to determine dry mass and calculate leaf mass per area (LMA) as dry mass divided by area. Phylloclade thickness was measured with electronic digital calipers (Fisher Scientific, Pittsburgh, PA, USA), and density was calculated as mass per area divided by thickness (Witkowski and Lamont 1991).

Phylloclade anatomy

We sampled phylloclades of each species and prepared cross-sections for anatomical measurements. Phylloclades were preserved in formalin acetic acid (37% formaldehyde, glacial acetic acid, 95% ethanol, and deionised water in a 10:5:50:35 mixture). We measured the transverse cross-sectional anatomy using sections cut halfway along the phylloclade length, embedded in LR White (London Resin Co., London, UK), cut 0.5 μm thick using a microtome (Ultracut E, Reichert-Jung Ultracut E, Leica Microsystems, Arcadia, CA, USA), stained with 0.01% toluidine blue in 1% sodium borate, and viewed under the light microscope using a 20–40 × objective (DMRB; Leica Microsystems, Wetzlar, Germany).

We measured tissue thicknesses and cell dimensions in the lamina, and dimensions of vascular bundles and of xylem conduits using Image J software (ver. 1.42 q; National Institutes of Health, Bethesda, MD, USA) on microscope images. We measured thickness for the lamina, cuticle, epidermis, epidermis cell wall, mesophyll, and water storage compartment. We averaged three measurements of each type for each cross-section. The phylloclade tissues were arranged...
Table 3. Mean values for gas exchange traits ± s.e. for *Ruscus aculeatus* and *R. microglossum*, with units and replication

For given traits, expectations are given for whether *Ruscus* should have a higher or lower value relative to comparator species according to the hypotheses of shade or drought adaptation. Comparator species data were taken according to availability in the previously published literature and numbers of species, and minimum, mean, and maximum trait values are provided. Sources of comparative data: \(A_{\text{area}}, J_{\text{max}}, R_{\text{area}}, R_{\text{mass}}, g_s \) (Wright et al. 2004); LCP (Walters and Reich 1999); \(A/g_s \) (Gulias et al. 2003); \(V_{\text{c,max}}, J_{\text{max}} \) (Wullschleger 1993); \(g_{\text{min}} \) (Kerstiens 1996). NS, not statistically significant at \(P < 0.05 \).

<table>
<thead>
<tr>
<th>Gas-exchange traits</th>
<th>Abbreviation</th>
<th>Units</th>
<th>(R.) aculeatus Mean ± s.e. N</th>
<th>(R.) microglossum Mean ± s.e. N</th>
<th>Shade adapted</th>
<th>Drought adapted</th>
<th>Comparator species (N) (min, mean, max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-saturated rate of photosynthesis per area</td>
<td>(A_{\text{area}})</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
<td>5.22 ± 1.33</td>
<td>4.51 ± 0.47</td>
<td>6</td>
<td>Lower<sup>A</sup>,<sup>B</sup></td>
<td>Temperate broadleaf evergreens (78)</td>
</tr>
<tr>
<td>Light-saturated rate of photosynthesis per mass</td>
<td>(A_{\text{mass}})</td>
<td>(\text{nmol CO}_2 \text{ g}^{-1} \text{s}^{-1})</td>
<td>0.043 ± 0.011</td>
<td>0.050 ± 0.005</td>
<td>6</td>
<td>Lower<sup>A</sup>,<sup>B</sup></td>
<td>Temperate broadleaf evergreens (78)</td>
</tr>
<tr>
<td>Respiration rate per area</td>
<td>(R_{\text{area}})</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
<td>0.044 ± 0.009</td>
<td>0.156 ± 0.015</td>
<td>10</td>
<td>Lower<sup>A</sup>,<sup>B</sup></td>
<td>Lower<sup>A</sup>,<sup>B</sup></td>
</tr>
<tr>
<td>Respiration per mass</td>
<td>(R_{\text{mass}})</td>
<td>(\text{nmol CO}_2 \text{ g}^{-1} \text{s}^{-1})</td>
<td>3.56E-04 ± 7.02E-05</td>
<td>1.71E-03 ± 1.66E-04</td>
<td>10</td>
<td>Lower<sup>A</sup>,<sup>B</sup></td>
<td>Lower<sup>A</sup>,<sup>B</sup></td>
</tr>
<tr>
<td>Maximum stomatal conductance per area</td>
<td>(g_s)</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
<td>33 ± 0.007</td>
<td>35 ± 0.006</td>
<td>6</td>
<td>Lower<sup>A</sup>,<sup>B</sup></td>
<td>Lower<sup>A</sup>,<sup>B</sup></td>
</tr>
<tr>
<td>Light compensation point</td>
<td>LCP</td>
<td>(\mu \text{mol photons m}^{-2} \text{s}^{-1})</td>
<td>4.85 ± 0</td>
<td>3.61 ± 0</td>
<td>6</td>
<td>Lower<sup>A</sup>,<sup>B</sup></td>
<td>Tropical evergreen shade-tolerators (15)</td>
</tr>
<tr>
<td>Intrinsic water use efficiency</td>
<td>(A/g_s)</td>
<td>(\mu \text{mol} \text{ mol}^{-1})</td>
<td>154 ± 8</td>
<td>142 ± 19.0</td>
<td>6</td>
<td>Higher<sup>A</sup>,<sup>B</sup></td>
<td>Mediterranean species (78)</td>
</tr>
<tr>
<td>Ratio of intercellular to ambient ([\text{CO}_2])</td>
<td>(C'/C_a)</td>
<td></td>
<td>0.327 ± 0.106</td>
<td>0.431 ± 0.064</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum rate of carboxylation</td>
<td>(V_{\text{c,max}})</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
<td>26.6 ± 3.18</td>
<td>24.7 ± 5.42</td>
<td>5</td>
<td>Lower<sup>A</sup>,<sup>B</sup></td>
<td>Temperate hardwood species (19)</td>
</tr>
<tr>
<td>Maximum rate of electron transport</td>
<td>(J_{\text{max}})</td>
<td></td>
<td>60.1 ± 6.35</td>
<td>50.6 ± 7.86</td>
<td>5</td>
<td>Lower<sup>A</sup>,<sup>B</sup></td>
<td>Temperate hardwood species (19)</td>
</tr>
<tr>
<td>Leaf cuticular conductance</td>
<td>(g_{\text{min}})</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
<td>0.379 ± 0.082</td>
<td>0.295 ± 0.082</td>
<td>12</td>
<td>Lower<sup>A</sup>,<sup>B</sup></td>
<td>Vascular plants (201)</td>
</tr>
<tr>
<td>Stem cuticular conductance</td>
<td>(g_{\text{min}})</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
<td>0.095 ± 0.025</td>
<td>0.030 ± 0.003</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^A An expectation according to a hypothesis was confirmed for *R. aculeatus*.

^B An expectation according to a hypothesis was confirmed for *R. microglossum*.

Trait-based shade and drought tolerance in *Ruscus* Functional Plant Biology E
Table 4. Mean values for hydraulics traits ± s.e. for *Ruscus aculeatus* and *R. microglossum*, with units and replication

For given traits, expectations are given for whether *Ruscus* should have a higher or lower value relative to comparator species according to the hypotheses of shade or drought adaptation. Comparator species data were taken according to availability in the previously published literature and number of species, and minimum, mean, and maximum trait values are provided, or mean ± standard error, if only these were available. Sources of comparative data: *K*_{shoot} (Sack and Holbrook 2006); *Ψ_{tlp}, *RWC_{tlp}, *Π_o, *ε* (Bartlett et al. 2012); *C_f* (Seofofi et al. 2008); NS: not statistically significant at *P* < 0.05

<table>
<thead>
<tr>
<th>Hydraulics traits</th>
<th>Abbreviation</th>
<th>Units</th>
<th>R. aculeatus Mean ± s.e.</th>
<th>N</th>
<th>R. microglossum Mean ± s.e.</th>
<th>N</th>
<th>Hypotheses</th>
<th>Comparator species</th>
<th>(N)</th>
<th>(min, mean, max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoot hydraulic conductance</td>
<td>K<sub>shoot</sub></td>
<td>mmol m<sup>−2</sup>s<sup>−1</sup> MPa<sup>−1</sup></td>
<td>2.16 ± 0.10</td>
<td>10</td>
<td>2.69 ± 0.13</td>
<td>11</td>
<td>Lower<sup>A,B</sup></td>
<td>Lower<sup>A,B</sup></td>
<td>Temperate woody angiosperms (38)</td>
<td>8 ± 1</td>
</tr>
<tr>
<td>Osmotic potential at full turgor</td>
<td>π<sub>o</sub></td>
<td>MPa</td>
<td>-1.28 ± 0.10</td>
<td>6</td>
<td>-0.65 ± 0.03</td>
<td>6</td>
<td>Higher<sup>A,B</sup></td>
<td>Higher<sup>A,B,C</sup></td>
<td>Tropical woody angiosperms (49)</td>
<td>13 ± 1.5</td>
</tr>
<tr>
<td>Turgor loss point</td>
<td>Ψ<sub>tlp</sub></td>
<td>MPa</td>
<td>-1.84 ± 0.10</td>
<td>6</td>
<td>-1.13 ± 0.07</td>
<td>6</td>
<td>Higher<sup>A,B</sup></td>
<td>Higher<sup>A,B,C</sup></td>
<td>Evergreen woody species (182)</td>
<td>-3.4, -1.83, -0.49</td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>ε</td>
<td>MPa</td>
<td>11.0 ± 1.41</td>
<td>6</td>
<td>5.88 ± 0.53</td>
<td>6</td>
<td>Lower<sup>A,B,C</sup></td>
<td>Evergreen woody species (139)</td>
<td>3.56, 17.1, 73.4</td>
<td></td>
</tr>
<tr>
<td>Relative water content at turgor loss point</td>
<td>RWC<sub>tlp</sub></td>
<td>%</td>
<td>88.8 ± 1.09</td>
<td>6</td>
<td>89.3 ± 0.85</td>
<td>6</td>
<td>Higher<sup>A,B,C</sup></td>
<td>Evergreen woody species (19)</td>
<td>71, 81.2, 91.1</td>
<td></td>
</tr>
<tr>
<td>Relative capacitance at full turgor</td>
<td>C<sub>f</sub></td>
<td>MPa<sup>−1</sup></td>
<td>0.067 ± 0.008</td>
<td>6</td>
<td>0.102 ± 0.010</td>
<td>6</td>
<td>Higher<sup>A,B,C</sup></td>
<td>Evergreen species (6)</td>
<td>0.040, 0.066, 0.113</td>
<td></td>
</tr>
<tr>
<td>Relative capacitance at turgor loss</td>
<td>C<sub>tlp</sub></td>
<td>MPa<sup>−1</sup></td>
<td>0.104 ± 0.015</td>
<td>6</td>
<td>0.089 ± 0.003</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predawn water potential</td>
<td>Ψ<sub>pre</sub></td>
<td>MPa</td>
<td>-0.45 ± 0.08</td>
<td>4</td>
<td>-0.88 ± 0.08</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midday water potential</td>
<td>Ψ<sub>mid</sub></td>
<td>MPa</td>
<td>-1.41 ± 0.08</td>
<td>3</td>
<td>-1.29 ± 0.28</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^A An expectation according to a hypothesis was confirmed for *R. aculeatus*.

^B An expectation according to a hypothesis was confirmed for *R. microglossum*.

^C Expectations for these traits are based on drought tolerance conferred by water storage tissue ("suculence"); the opposite expectations would arise for drought tolerance conferred by the ability to maintain turgor with dehydration.
symmetrically, with adaxial and abaxial layers of mesophyll, epidermis and cuticle above and below a central, aechlorophyllous water storage tissue (Fig. 2). The per cent air space in each of the adaxial and abaxial mesophyll, and in the water storage compartment was estimated to the nearest 5%, and the total phylloclade air space was calculated:

\[\sum \frac{\% \text{Air space in each tissue}}{\text{fraction of leaf cross section occupied by that tissue}} \times \frac{100}{100} \]

As indices of cell size, the cross-sectional areas and perimeters were measured for three cells in the epidermis (adaxial and abaxial), the mesophyll (adaxial and abaxial, i.e. above and below the water storage tissue), and the water storage tissue. The area occupied by chloroplasts within a mesophyll cell was measured for three cells (adaxial and abaxial) and the percent cross-sectional chloroplast area was calculated as the ratio of chlorophyll area divided by mesophyll cell area.

We calculated the surface area of mesophyll cells per leaf area \((A_{\text{mes}}/A) \) as described by Sack et al. (2013a), a measure of the area available for CO2 uptake for mesophyll cell layers. Given the lack of palisade-form cells, we modelled all mesophyll cells as spheres for these calculations.

We also measured vascular anatomy to quantify traits related to the efficiency of water transport within and outside the xylem. We measured the inter-veinal distance \((IVD) \) and also the minimum distance from edge of bundle sheath to epidermis \((D_m) \) as the hypotenuse between the distance between veins and the distance to the epidermis (Brodribb Feild and Jordan 2007):

\[D_m = \sqrt{\frac{IVD^2}{2} + (\text{distance from bundle sheath edge to epidermis})^2} \]

We averaged \(IVD \) and \(D_m \) from three values for each cross-section.

For all anatomical traits, except those relating to the central water storage tissue, measurements were made both adaxial and abaxial halves, and values for the two halves were averaged when not significantly different (at \(P<0.05 \) in paired \(t \)-tests), except they were summed for total \(A_{\text{mes}}/A \).

To characterise the midrib, for three typical fibrous bundle sheath cells we measured the cross-sectional heights, widths and cell wall thicknesses, calculating mean values for each trait from three measurements per cross-section. To characterise the xylem anatomy and theoretical conductivity of xylem conduits, for a typical conduit within the midrib, an intermediary vein, and a minor vein of each sampled phylloclade, we treated the conduit as an ellipse and determined the major and minor axis diameters. We calculated the theoretical hydraulic conductivity of the xylem conduit using Poiseuille’s equation for ellipses based on conduit dimensions (Lewis and Boose 1995; Cochard Nardini and Coll 2004):
Fig. 1. (a) *Ruscus aculeatus* and (b) *R. microglossum* growing at the Mildred E Mathias Botanical Garden. Note that what at first glance appear to be leaves are in fact phylloclades.

Ruscus aculeatus

Ruscus microglossum

Fig. 2. Lamina and midrib cross-sections of *Ruscus aculeatus* and *R. microglossum* phylloclades (0.5 μm thick). Note that both species exhibit shade tolerance features such as absence of palisade tissue, as well as drought tolerance features such as large water storage compartment and thick-walled epidermis and fibrous bundle sheath cells surrounding the xylem and phloem for both major and minor veins, especially prominent in *R. aculeatus*, which is native to drier habitats.

\[
K_t = \frac{\pi a^3 b^3}{64 \eta (a^2 + b^2)},
\]

where \(a\) and \(b\) are the major and minor axes of the ellipse and \(\eta\) is water viscosity at 25°C.

Gas-exchange measurements, responses to light and \(\text{CO}_2\), and cuticular conductance

In July and August 2009, photosynthetic light response curves and \(\text{CO}_2\) response curves were measured using a Li-6400 portable photosynthesis system (Li-Cor Biosciences) with light provided.
by a red-blue light source (6400–02B no. SI-710; Li-Cor Biosciences). Gas-exchange measurements were made on at least 1–2 phylloclades per individual.

For light-response curves, phylloclades were acclimated for at least 5 min at 1500 μmol m⁻² s⁻¹ PAR, at temperatures of 25–27°C, with RH maintained at ~50%, and CO₂ concentration of 400 μmol mol⁻¹. Then, phylloclades were measured for net CO₂ assimilation per leaf area at PAR steps of 1600, 1400, 1200, 1000, 800, 600, 500, 400, 300, 200, 100, 50, and 0 μmol m⁻² s⁻¹, with 180–240 s stabilisation at each irradiance step. We determined light-saturated photosynthetic rate per area and mass (A_area and A_mass), dark respiration rate per area and mass (R_area and R_mass), i.e. the negative A at zero PAR; maximum stomatal conductance per area (gₛ); light compensation point (LCP) as the x-intercept; intrinsic water use efficiency (WUE, ΔA/Δarea/gₛ); and the ratio of intercellular to ambient CO₂ concentration (C_i/C_a) at 100 μmol m⁻² s⁻¹ PAR. We then harvested the phylloclades measured for gas exchange to determine the nitrogen concentration and carbon isotope ratio (see below).

For CO₂-response curves, phylloclades were allowed to equilibrate at 400 ppm to induce stomatal opening, and the net CO₂ assimilation per leaf area was determined at Ci steps of 400, 300, 200, 100, 50, 400, 400, 500, 600, 800, 1200, 1400, 1600 ppm, with 3–4 min equilibration time at each step. We determined maximum rate of carboxylation and maximum rate of electron transport per leaf area (V_c,max and J_max) from plots of Ci; vs A, corrected to 25°C (Farquhar and von Caemmerer 1980).

Cuticular conductance (i.e. minimum epidermal conductance; gₘᵢₙ sensu Kerstiens 1996) was determined for 3–4 mature phylloclades and 10 cm lengths of stems from each of three individuals of each species. Phylloclade and stem samples were hydrated, and then the cut ends were sealed with wax. Samples were dried for at least 30 min on a laboratory bench, at PAR of <10 μmol photons m⁻² s⁻¹ to induce stomatal closure, then samples were weighed for at least eight intervals of 30 min, during which the slope of water loss versus time was highly linear (R² > 0.995) and therefore taken to represent transpiration after stomata had closed fully. The gₘᵢₙ was calculated as the transpiration rate divided by the mole fraction vapour pressure deficit (VPD, determined from a weather station; HOBO Micro Station with Smart Sensors, Onset, Bourne, MA, USA).

Foliar nitrogen concentration and carbon isotope ratio

To analyse total tissue nitrogen concentration and carbon isotope composition (δ¹³C), for three replicates from each of three individuals for each species, phylloclade samples were oven-dried at 70°C for more than 48 h, and ground by mortar and pestle. The nitrogen concentration and δ¹³C were determined at the UC Davis Stable Isotope Facility using an elemental analyser (PDZ Europa ANCA-GSL, Sercon Ltd, Cheshire, UK) interfaced to an isotope ratio mass spectrometer (PDZ Europa 20–20, Sercon Ltd) at the UC Davis Stable Isotope Facility. Final δ¹³C content values are expressed relative to international standard Vienna Pee Dee belemnite (V-PDB) for carbon:

$$\delta^{13}C(\%e) = (\frac{^{13}C/^{12}C \text{ of sample}}{^{13}C/^{12}C \text{ of standard}} - 1) \times 1000 \quad (4).$$

δ¹³C of plant tissues can provide a measure of intrinsic WUE (A/gₛ) at the time that carbon was assimilated, giving long-term water-use efficiency.

Comparative data compilation and trait comparison

To consider Ruscus trait values in a global context, we compiled data from the literature for: (1) temperate and tropical broadleaf evergreen species; (2) Mediterranean species; and (3) woody angiosperms in general. When available, we considered data for plants grown in the shade and for species that are shade tolerant;
However, eco-physiological trait data is generally collected for sun leaves or plants, making a comparison solely for shade grown plants not possible. For more commonly studied traits (e.g. A_{max}), comparative data was taken from studies with large databases and multiple traits (e.g. GLOPNET; Wright et al. 2004). We determined minimum, mean, and maximum values for traits from comparative studies, or the mean and standard error if raw species values were not available. Studies that were included for comparative data are referenced in the captions for Table 1–5 in association with the specific traits we compared. Differences between Ruscus trait values and comparative data from the literature were determined for both R. aculeatus and R. microglossum. Hypotheses were deemed supported for a Ruscus species if the trait value was higher or lower than the mean comparator value in the way predicted.

Results
Both Ruscus species studied had leaf morphology consistent with adaptation to shade and drought, relative to comparator species (Tables 1–5). We constructed a radar graph to encapsulate the key traits that would confer adaptation to shade, drought, and the combination, for R. aculeatus, which had the more extreme adaptation of the two Ruscus species considered (Fig. 3). This figure summarises the major results of our study, with values for comparator species appearing as the inner circle and R. aculeatus trait values displayed as the bold, outer line.

Gross morphology of phylloclades
Both R. aculeatus and R. microglossum had LMA values lower than comparator species, and R. microglossum had phylloclades larger than the mean leaf area for comparator species. Both Ruscus species had lower bulk tissue density than comparator species, consistent with the water storage in the Ruscus phylloclades. Notably, despite its water storage tissue, the LDMC and SWC values of R. aculeatus were typical of those for comparator species, whereas R. microglossum had a lower LDMC and a higher SWC than for comparator species sets (Table 1).

![Radar graph illustrating percent difference between selected traits of Ruscus aculeatus with comparative data (see Tables 1–5 for symbols and sources of comparative data). Values for R. aculeatus outside the circle indicate shade and/or drought tolerance. Traits are arranged according to whether they would contribute shade tolerance, drought tolerance or both. The inner disc represents the mean for comparative species for given traits, and the values for R. aculeatus is scaled relative to the magnitude of that value (%), with a value outside the disc representing greater shade and/or drought tolerance; (+) and (−) indicate if the axis is scaled such that a value outside the circle represents percent higher or lower than comparative values respectively. For traits expressed as negative values, (+) and (−) indicate more negative or less negative respectively.](image-url)
Anatomy of phylloclades
The Ruscus species possessed numerous anatomical traits consistent with benefits for both shade and drought tolerance (Table 2). The phylloclade cross-sections were symmetrical (Fig. 2), and thus the cross-sectional anatomy of the adaxial and abaxial halves were not different for all traits (paired t-test; \(P > 0.05 \)) and values were averaged within species. The two species were similar in their substantial leaf thickness and in the thickness of cuticle, epidermis cell walls and water storage compartment (Table 2). The fractions of the lamina occupied by the epidermis, mesophyll and water storage tissues were 15, 52–56, and 29–32% respectively.

Both species had parallel longitudinal veins of three sizes (midrib, intermediate, and small veins). Consistent with drought adaptation, the two species had low \(D_{mv} \). R. aculeatus having the lower value, and R. microglossum had a higher IVD (Table 2). The two species had, on average, the same maximum conduit diameters in their midribs, intermediate veins, and small veins, and the maximum conduit diameter decreased ~35% from the midrib to the small veins. The average theoretical hydraulic conductivity of xylem conduits did not differ between the two species had, on average, the same maximum conduit parameters and leaf water storage (Table 4). Notably, both species had lower \(g_{\text{min}} \) and \(\psi_{\text{t}} \) relatively to comparator vascular plant species (Fig. 3; Table 3), consistent with shade adaptation. The two Ruscus species had very high values for \(A/g_a \) (Table 3), consistent with excellent WUE. Consistent with strong drought tolerance via retention of stored water, both species had very low values for leaf and stem \(g_{\text{min}} \), especially relative to comparator vascular plant species (Fig. 3; Table 3).

Gas-exchange measurements
Consistent with adaptation to simultaneous shade and drought, the Ruscus species had very low values for \(R_{\text{area}}, R_{\text{mass}}, \) and \(g_{\text{v}} \) (Table 3) relative to comparator temperate broadleaf evergreen species (Fig. 3). The \(A_{\text{area}}, A_{\text{mass}}, \) LCP, \(V_{c,\text{max}} \) and \(J_{\text{max}} \) were also very low relative to comparator species (Fig. 3; Table 3), consistent with shade adaptation. The two Ruscus species had very high values for \(A/g_s \) (Table 3), consistent with excellent WUE. Consistent with strong drought tolerance via retention of stored water, both species had very low values for leaf and stem \(g_{\text{min}} \), especially relative to comparator vascular plant species (Fig. 3; Table 3).

Hydraulic conductance, pressure volume curve parameters and leaf water storage
Consistent with expectations for combined drought and shade tolerance, both Ruscus species had low \(K_{\text{shoot}} \) relative to comparator tropical and temperate woody angiosperms (Fig. 3; Table 4). The pressure–volume curve parameters of Ruscus were consistent with achieving drought tolerance through tissue water storage. Both species had less negative \(\pi_s \) and \(\psi_{\text{t}} \) than mean values for comparative evergreen woody species (Fig. 3; Table 4). Notably, both species had lower \(\epsilon \) values than comparative evergreen woody species, and higher \(RWC_{\text{t}} \) and \(C_{\text{H}} \) values (Fig. 3; Table 4), consistent with drought tolerance.

Nitrogen concentration and carbon isotope composition
Both species had high values for phylloclade \(N_{\text{area}} \) and \(N_{\text{mass}} \) relative to comparative temperate broadleaf evergreen species, consistent with drought adaptation (Fig. 3). The \(\delta^{13}C \) values were very negative and typical of values often observed for understory plants (da Silveira et al. 1989), consistent with shade tolerance. Indeed, the \(\delta^{13}C \) values were notably strongly negative given the high WUE found for these species.

Testing hypotheses for shade and drought tolerance with trait survey data
Overall, we quantified 57 traits for the two Ruscus species, and for 21 traits we had a priori hypotheses for a benefit for shade tolerance and for 24 traits we had a priori hypotheses for a benefit for drought tolerance. Using comparative data, we found that 16 of 21 hypotheses were supported for shade tolerance, and 22 of 24 were supported for drought tolerance. Of the nine hypotheses for traits that would contribute to both shade and drought tolerance simultaneously (i.e. expectations were both for higher or lower values than comparative species), eight were supported by trait data. All these proportions were significantly higher than the 50% support that would have been expected to arise only from chance (\(P = 0.001–0.058 \); proportion tests). Notably, in the seven cases when shade tolerance traits would conflict with drought tolerance traits, four indicated a benefit for drought tolerance rather than shade tolerance for both species (Tables 1–5).

Discussion
Both R. aculeatus (Fig. 3) and R. microglossum showed trait values consistent with combined shade and drought tolerance. Numerous traits were consistent with a combined shade and drought tolerance through improving carbon balance, enabling a conservative resource use, i.e. via slow respiration and long-lived parts. Other traits would contribute specifically to drought tolerance via reduced demand for water during active photosynthesis and the ability to survive strong drought after stomatal closure. Notably, many such traits were related to water storage, providing new insights into effective forms of succulence in shaded habitats. This suite of traits would contribute importantly to the ability of Ruscus to occupy shaded sites prone to strong drought across a wide geographical range.

Traits contributing to simultaneous drought and shade tolerance
Ruscus species showed specialisation associated with conservative resource use consistent with tolerance of shade and drought. These specialised traits included thick lamina and component tissues that contribute to long tissue life-spans (shoots last >5 years; Sack et al. 2003b; Wright et al. 2004). Additionally, Ruscus species had very low gas-exchange rates, including low \(g_s \), and low \(K_{\text{shoot}} \), which would correspond to a low investment in vascular tissue (Tyrre and Zimmermann 1983; Sack et al. 2003b), and low \(R_{\text{area}}, R_{\text{mass}}, A_{\text{area}} \) and \(A_{\text{mass}} \), all representing an ability to maintain photosynthesis and growth with low requirements for light and water.

Traits contributing to drought tolerance
According to Jones et al. (1992), drought tolerance can be achieved through avoidance of plant water deficits, tolerance of plant water deficits or efficiency mechanisms. Ruscus species showed traits associated with drought tolerance either by providing the ability to maintain photosynthesis and growth in drying soil and/or the ability to survive chronic drought, as
previously shown experimentally for *R. aculeatus* (Sack 2004). Traits that would contribute to the ability to maintain gas exchange in drying soil include small leaf size, high WUE and low *IVD*. High WUE, achieved in part with high \(N_{\text{area}} \), means these *Ruscus* species can attain positive carbon balance even with extremely low \(g_s \). Low *IVD* and water storage capacitance allow the phylloclades to maintain water supply to the mesophyll and tolerate transiently high evaporation rates, for example, due to sunflecks, without desiccating the leaf (Sack et al. 2003a). Traits contributing to the ability of the phylloclades to survive extended drought included those enabling a low evaporation rate per leaf area once stomata have shut, such as low \(g_{\text{min}} \) in leaf and stem, and those related to specialised water storage tissue, linked with low leaf density, low \(\varepsilon \), and \(\pi_s \) values that were low in magnitude.

Ruscus water storage

The water storage tissue of *Ruscus* that occupied a third of the leaf thickness, although contributing most directly to drought tolerance, is also consistent with shade tolerance, given its contribution to reduced tissue costs for the phylloclade as a whole. The water storage tissue had thin cell walls, reflected in the low bulk \(\varepsilon \), and low solute concentration, contributing to bulk \(\pi_s \) values that were low in magnitude.

This water storage tissue would also contribute to both types of drought tolerance – the ability to maintain photosynthesis in drying soil and to survive after stomata have shut during extended drought. The ‘succulence’ of *Ruscus* phylloclades is distinctive relative to more typical succulent-leaved and succulent-stemmed species, which tend to have high leaf water content and capacitance values (Vendramini et al. 2002; Ogburn and Edwards 2012). In contrast, in *Ruscus* species, the SWC was low relative to typical leaf succulent species, and for *R. aculeatus*, \(C_n \) fell within the range of typical evergreen leaves. We note that the strong tissue differentiation in *Ruscus* (i.e. separation of mesophyll cell and water storage in space and their distinctions in anatomy) would contribute to high effectiveness of water storage, even if the bulk tissue overall had low SWC and capacitance. Indeed, across species there tends to be no relationship between the magnitude of SWC or capacitance and the degree of within-leaf tissue differentiation (Ogburn and Edwards 2012). Notably, such differentiation would contribute special advantages for supply of water, whether stomata are open or closed, as the large, thin-walled water storage cells with low solute concentration can yield their water to supply the evaporative load, while the photosynthetic tissues can maintain their volume according to their thicker walls and stronger solute concentration.

Although the capacitance and SWC values were low for *Ruscus* species, these values would be more substantial if considered relative to water demand. Across several species, \(C_n \) has been found to correlate with \(K_{\text{shoot}} \) and with \(g_s \) (Sack et al. 2003a; Blackman et al. 2010), indicating that leaves tend to be built with capacitance to match their maximum flux rates, and thus to buffer the leaf water potential against surges in transpiration. Thus, because *Ruscus* has low \(g_s \) when stomata are open and low \(K_{\text{shoot}} \), the capacitance would be expected to supply transpiration transiently during sunflecks or high VPD. Likewise, when stomata close, the capacitance supplies ongoing water loss via cuticular conductance. Given the extremely low \(g_{\text{min}} \) of *Ruscus*, even its moderate \(C_{\text{tlp}} \) can enable survival for weeks (Sack et al. 2003b; Sack 2004). Further, at turgor loss, the water content would equal \(\text{SWC} \times \text{RWC}_{\text{tlp}} \), and the relatively high \(\text{RWC}_{\text{tlp}} \) would contribute to the high water content once turgor is lost. Thus, the ‘succulence’ of *Ruscus* is moderate in absolute terms, but combined with its other very strong mechanisms to reduce transpiration when stomata are open or closed, i.e. low \(g_s \) and \(g_{\text{min}} \), even this moderate capacitance would provide strong functionality.

Water-use efficiency and carbon isotope composition

It was noteworthy that despite extremely high WUE values, phylloclade \(\delta^{13}C \) values of the *Ruscus* species were very negative. This presents a strong anomaly worthy of further investigation, as species with high WUE typically have higher \(\delta^{13}C \) (less negative, i.e. closer to zero). The \(\delta^{13}C \) can be influenced by a host of processes including source CO\(_2\), stored plant carbon, and time-integrated CO\(_2\) concentration at the site of carboxylation (Farquhar et al. 1989). For *Ruscus*, although \(\delta^{13}C \) values were typical of an understory plant, they did not appear to be driven by internal CO\(_2\) concentration because the leaf isotopic values were depleted in \(^{13}C \), whereas the high WUE determined by gas exchange would likely promote enriched isotopic values. It is more likely that \(\delta^{13}C \) in this species was determined by source CO\(_2\) or stored carbon, or recycling of respired CO\(_2\) (da Silveira et al. 1989). Our study individuals of *Ruscus* were cultivated in a shaded understory, similar to their natural habitat. Previous studies have shown that there can be higher concentrations of respired CO\(_2\) in the forest understory than in the canopy, resulting in more negative carbon isotope ratios in understory plant tissue than canopy plant tissue (da Silveira et al. 1989). This is a function of decomposing leaves and litter cover, slow air mixing, as well as plant environmental responses.

A second possible explanation for the \(\delta^{13}C \) values of *Ruscus* is related to its growth form and phenology, as *Ruscus* has extensive rhizomes (Sack et al. 2003b), which act as a carbon store for the plant. Using this recycled carbon during the growth season, when the plant may not be able to meet its carbon requirement by photosynthesis alone because of low maximum rates under light limitation, may also contribute to more negative \(\delta^{13}C \) values (Vizzini 2003). Notably, *Ruscus* stems are hollow and thus can also store relatively large amounts of CO\(_2\), for use during a growth period when carbon is otherwise limiting, especially given very low \(g_s \). Some of this stored carbon might be photosynthetically fixed by the stem (Nilsen and Sharifi 1997). In each of these cases, respired, stored, or recycled CO\(_2\) would supply carbon that was previously fixed by Rubisco with more negative \(\delta^{13}C \) values (~27%o) than air (~8%o).

There was also a dissonance between the \(\delta^{13}C \) value and \(C_l / C_i \). The fully mature phylloclades which were selected and used for gas-exchange and \(\delta^{13}C \) measurements were produced during late winter and early spring with mild temperatures (average at midday 19.0–22.0°C) and low atmospheric VPD.
Historically, it is likely that shade tolerance preceded drought tolerance. Further, how plants can avoid a general trade-off between shade and the suite of traits examined here, is one case demonstrating tolerance. Of traits presented here scales up to plant shade and drought one could determine how the species are later found to be inappropriate. Ideally, when a model for robust to the removal of some traits from the analysis if those species. However, one advantage of testing numerous as conclusive evidence of the value functional significance of these traits in other species. We acknowledge there is some degree of uncertainty in interpreting a large number of traits simultaneously based on studies of other species. First, the interpretation of the value of traits based on other species may not be in all cases equally valid for Ruscus. Some trait variation may relate to other functions. Further studies, for example, using mutants, would be necessary as conclusive evidence of the value of specific traits in a given species. However, one advantage of testing numerous expectations for each hypothesis is that the key finding will be robust to the removal of some traits from the analysis if those are later found to be inappropriate. Ideally, when a model for estimating plant performance from leaf traits becomes available, one could determine how the specific quantitative combinations of traits presented here scales up to plant shade and drought tolerance. The shade and drought tolerance of Ruscus, consistent with the suite of traits examined here, is one case demonstrating how plants can avoid a general trade-off between shade and drought tolerance. Further, Ruscus is noteworthy as one of only a few stem photosynthetic plants that occupy a shaded habitat. Historically, it is likely that shade tolerance preceded drought tolerance given this species’ ancestors were species of moist tropical forests (Kim et al. 2010), and thus Ruscus or its ancestor apparently evolved drought tolerance while expanding its range into drier habitat or during past climate change. Considering its unique adaptations and trait values, Ruscus can serve as an excellent model for the basis of combined shade and drought tolerance.

Implications for drought and shade tolerance: Ruscus as a model

We found strong support for a large number of hypotheses for traits’ role in shade and drought tolerance, providing a strong trait basis for combined tolerance. Although the detailed functional trait survey conducted here is relatively novel in its breadth (see also Pasquet-Kok et al. 2010), this is a logical extension of the traditional approach for understanding the basis for plant adaptation to environment, i.e. testing expectations for individual traits established by previous studies of the functional significance of these traits in other species. We acknowledge there is some degree of uncertainty in interpreting a large number of traits simultaneously based on studies of other species. First, the interpretation of the value of traits based on other species may not be in all cases equally valid for Ruscus. Some trait variation may relate to other functions. Further studies, for example, using mutants, would be necessary as conclusive evidence of the value of specific traits in a given species. However, one advantage of testing numerous expectations for each hypothesis is that the key finding will be robust to the removal of some traits from the analysis if those are later found to be inappropriate. Ideally, when a model for estimating plant performance from leaf traits becomes available, one could determine how the specific quantitative combinations of traits presented here scales up to plant shade and drought tolerance.

The shade and drought tolerance of Ruscus, consistent with the suite of traits examined here, is one case demonstrating how plants can avoid a general trade-off between shade and drought tolerance. Further, Ruscus is noteworthy as one of only a few stem photosynthetic plants that occupy a shaded habitat. Historically, it is likely that shade tolerance preceded drought tolerance given this species’ ancestors were species of moist tropical forests (Kim et al. 2010), and thus Ruscus or its ancestor apparently evolved drought tolerance while expanding its range into drier habitat or during past climate change. Considering its unique adaptations and trait values, Ruscus can serve as an excellent model for the basis of combined shade and drought tolerance.

Acknowledgements

We thank the Mildred E Mathias Botanical Garden for access to garden and plants, Andy Truong for assistance with measurements, Howard Griffiths, Louis Santiago, and Cheryl Swift for helpful discussions and comments on the manuscript. This work was supported by National Science Foundation Grant IOB-0546784.

References

